Wani CTF 2024
uf
Challenge:
import os
from secrets import randbits
from Crypto.Util.number import bytes_to_long
FLAG = os.environb.get(b"FLAG", b"FAKE{THIS_IS_DUMMY_FLAG}")
m = bytes_to_long(FLAG)
assert m.bit_length() >= 512
def encrypt(m: int, n: int = 512) -> int:
x = 0
for i in range(n):
x <<= 1
x += m * randbits(1)
if i >= n // 2:
x ^= randbits(1)
return x
X = [encrypt(m) for _ in range(4)]
print(X)
[6643852762092641655051592752286380661448697120839285262713138738793179330857521051418707355387198243788554658967735136760757552410466512939791351078152197994352930016306075464400264019640466277732596022216246131141036813931972036259910390741311141390889450882074162723823607552591155184799627590418587536982033939537563823, 4495106960532238798978878322218382764459613684889887356979907395021294655849239390809608204284927849117763119933285899077777162943233437728643056322845118660545730870443735090094400144586494098834221418487123653668703665085461676013454922344247818407399456870636622800919629442727075235809213114639237367651539678560390951, 7622226387024225267485603541284038981214490586915816777231024576546652676746968149372915915975325662783469952634025859954515971134032563991925283958708572235632178937041656690377178266198211581176947491463237398083133658483056792368618417698027992083481412961301906342594056438180675328433412539805240307255787971167535638, 1149407465454162408488208063367931363888120160126632926627929705372269921465081968665764846439238807939361247987642326885758277171318666479752274577607727935160689442316433824450832192798328252739495913920016290902086534688608562545166349970831960156036289570935410160077618096614135121287858428753273136461851339553609896]
Solve:
First observe that commenting out 2 lines results in m == gcd([x0, x1, x2, x3])
:
import os
from secrets import randbits
from Crypto.Util.number import bytes_to_long
FLAG = b'A'*100
m = bytes_to_long(FLAG)
assert m.bit_length() >= 512
def encrypt(m: int, n: int = 512) -> int:
x = 0
for i in range(n):
x <<= 1
x += m * randbits(1)
#if i >= n // 2:
# x ^= randbits(1)
return x
x0, x1, x2, x3 = [encrypt(m) for _ in range(4)]
assert m == gcd([x0, x1, x2, x3])
If we uncomment them again then the lsb of each x has been corrupted.
We can represent this as:
x0 = y0*m + z0
x1 = y1*m + z1
x2 = y2*m + z2
x3 = y3*m + z3
For small z0, z1, z2, z3.
Next can eliminate m,
\[\frac{x_0 - z_0}{y_0} = \frac{x_1 - z_1}{y_1} = \frac{x_2 - z_2}{y_2} = \frac{x_3 - z_3}{y_3}\]Then,
\[y_1 \cdot (x_0 - z_0) = y_0 \cdot (x_1 - z_1)\] \[y_1 \cdot x_0 \approx y_0 \cdot x_1\] \[y_1 \cdot x_0 - y_0 \cdot x_1 = y_1 \cdot z_0 - y_0 \cdot z_1\]Note that on the LHS we have gotten rid of all the unknown z’s, and the value is small compared to the x’s, so we can put these in our target vector.
We can fix x0 and y0 (or another if you like) and repeat with the other equations:
y1*x0 - y0*x1
y2*x0 - y0*x2
y3*x0 - y0*x3
Now our vector equations:
\[y_1 \begin{bmatrix} 0\\x_0\\0\\0 \end{bmatrix} + y_2 \begin{bmatrix} 0\\0\\x_0\\0 \end{bmatrix} + y_3 \begin{bmatrix} 0\\0\\0\\x_0 \end{bmatrix} - y_0 \begin{bmatrix} 1\\x_1\\x_2\\x_3 \end{bmatrix} = \begin{bmatrix} -y0\\y1 \cdot x0 - y0 \cdot x1\\y2 \cdot x0 - y0 \cdot x2\\y3 \cdot x0 - y0 \cdot x3 \end{bmatrix}\]Testing:
import os
from secrets import randbits
from Crypto.Util.number import bytes_to_long
FLAG = b'A'*100
m = bytes_to_long(FLAG)
assert m.bit_length() >= 512
def encrypt(m: int, n: int = 512) -> int:
x = 0
for i in range(n):
x <<= 1
x += m * randbits(1)
#if i >= n // 2:
# x ^= randbits(1)
return x
x0, x1, x2, x3 = [encrypt(m) for _ in range(4)]
assert m == gcd([x0, x1, x2, x3])
y0 = x0//m
y1 = x1//m
y2 = x2//m
y3 = x3//m
z0 = randint(0, 2**50)
z1 = randint(0, 2**50)
z2 = randint(0, 2**50)
z3 = randint(0, 2**50)
x0 += z0
x1 += z1
x2 += z2
x3 += z3
assert x0 == y0*m + z0
assert x1 == y1*m + z1
assert x2 == y2*m + z2
assert x3 == y3*m + z3
assert y1*x0 - y0*x1 == y1*z0 - y0*z1
M = Matrix([
[1, x1, x2, x3],
[0, 0 , 0 , x0],
[0, 0 , x0, 0 ],
[0, x0, 0 , 0 ]
])
print(M.LLL()[0])
print([-y0, y1*x0-y0*x1, y2*x0-y0*x2, y3*x0-y0*x3])
Final solver:
x0, x1, x2, x3 = [6643852762092641655051592752286380661448697120839285262713138738793179330857521051418707355387198243788554658967735136760757552410466512939791351078152197994352930016306075464400264019640466277732596022216246131141036813931972036259910390741311141390889450882074162723823607552591155184799627590418587536982033939537563823, 4495106960532238798978878322218382764459613684889887356979907395021294655849239390809608204284927849117763119933285899077777162943233437728643056322845118660545730870443735090094400144586494098834221418487123653668703665085461676013454922344247818407399456870636622800919629442727075235809213114639237367651539678560390951, 7622226387024225267485603541284038981214490586915816777231024576546652676746968149372915915975325662783469952634025859954515971134032563991925283958708572235632178937041656690377178266198211581176947491463237398083133658483056792368618417698027992083481412961301906342594056438180675328433412539805240307255787971167535638, 1149407465454162408488208063367931363888120160126632926627929705372269921465081968665764846439238807939361247987642326885758277171318666479752274577607727935160689442316433824450832192798328252739495913920016290902086534688608562545166349970831960156036289570935410160077618096614135121287858428753273136461851339553609896]
M = Matrix([
[1, x1, x2, x3],
[0, 0 , 0 , x0],
[0, 0 , x0, 0 ],
[0, x0, 0 , 0 ]
])
y0 = -M.LLL()[0][0]
z0 = x0 % y0
m = (x0-z0)//y0
print(bytes.fromhex(f'{m:x}'))
# FLAG{hope_this_chal_is_not_automatically_solved_by_AI_c14ef1732e87a6c}