ECLCG - HITCON 2024
Challenge:
https://github.com/maple3142/My-CTF-Challenges/tree/master/HITCON%20CTF%202024/ECLCG
from Crypto.Util.number import getPrime
from Crypto.Cipher import AES
from fastecdsa.curve import secp256k1
from hashlib import sha256
from secrets import randbelow
G = secp256k1.G
q = secp256k1.q
def sign(d, z, k):
r = (k * G).x
s = (z + r * d) * pow(k, -1, q) % q
return r, s
def verify(P, z, r, s):
u1 = z * pow(s, -1, q) % q
u2 = r * pow(s, -1, q) % q
x = (u1 * G + u2 * P).x
return x == r
def lcg(a, b, p, x):
while True:
x = (a * x + b) % p
yield x
msgs = [
b"https://www.youtube.com/watch?v=kv4UD4ICd_0",
b"https://www.youtube.com/watch?v=IijOKxLclxE",
b"https://www.youtube.com/watch?v=GH6akWYAtGc",
b"https://www.youtube.com/watch?v=Y3JhUFAa9bk",
b"https://www.youtube.com/watch?v=FGID8CJ1fUY",
b"https://www.youtube.com/watch?v=_BfmEjHVYwM",
b"https://www.youtube.com/watch?v=zH7wBliAhT0",
b"https://www.youtube.com/watch?v=NROQyBPX9Uo",
b"https://www.youtube.com/watch?v=ylH6VpJAoME",
b"https://www.youtube.com/watch?v=hI34Bhf5SaY",
b"https://www.youtube.com/watch?v=bef23j792eE",
b"https://www.youtube.com/watch?v=ybvXNOWX-dI",
b"https://www.youtube.com/watch?v=dt3p2HtLzDA",
b"https://www.youtube.com/watch?v=1Z4O8bKoLlU",
b"https://www.youtube.com/watch?v=S53XDR4eGy4",
b"https://www.youtube.com/watch?v=ZK64DWBQNXw",
b"https://www.youtube.com/watch?v=tLL8cqRmaNE",
]
if __name__ == "__main__":
d = randbelow(q)
P = d * G
p = getPrime(0x137)
a, b, x = [randbelow(p) for _ in range(3)]
rng = lcg(a, b, p, x)
sigs = []
for m, k in zip(msgs, rng):
z = int.from_bytes(sha256(m).digest(), "big") % q
r, s = sign(d, z, k)
assert verify(P, z, r, s)
sigs.append((r, s))
print(f"{sigs = }")
with open("flag.txt", "rb") as f:
flag = f.read().strip()
key = sha256(str(d).encode()).digest()
cipher = AES.new(key, AES.MODE_CTR)
ct = cipher.encrypt(flag)
nonce = cipher.nonce
print(f"{ct = }")
print(f"{nonce = }")
sigs = [(49045447930003829750162655581084595201459949397872275714162821319721992870137, 21098529732134205108109967746034152237233232924371095998223311603901491079093), (8434794394718599667511164042594333290182358521589978655877119244796681096882, 72354802978589927520869194867196234684884793779590432238701483883808233102754), (98981626295463797155630472937996363226644024571226330936699150156804724625467, 78572251404021563757924042999423436619062431666136174495628629970067579789086), (39876682309182176406603789159148725070536832954790314851840125453779157261498, 57493814845754892728170466976981074324110106533966341471105757201624065653133), (65207470758289014032792044615136252007114423909119261801100552919825658080689, 35801670032389332886673836105411894683051812268221960643533854039645456103322), (62310615350331421137050446859674467271639363124966403418757056624834651785981, 35521772482874533704942922179876531774398711539124898773478624535131725819343), (112968103298671409136981160931495676458802276287280410415332578623201858813402, 69136482735760979952358359721969881674752452777485098096528689791122554903910), (65185852906255515620576935005939230631603582432998989514260597054881976462676, 85379997570993122627264764907519703985819259494167121515303052416417601678111), (89525951822575634807524099747751997083879407738240060351122435098952102365970, 73032937908295382442051096857786822685807890991333822263666894552392531234105), (10051482171127490286979879686762557184173302546674808492445781875620932719446, 26217862064468074441046914792412948081058029471697661868711999974556608497458), (8842758449685028748615236698968197767772820788773190926335075554397256573640, 31652804170027719136589492610452674938583230853203431940531961290992398961987), (23751070894286517351443200111133743672788640335816140651282619979550868046371, 62545547750389706281745923819072901405095067763677430386609805435019439100532), (73526459114147520989492697207756783950511563270716718674108128391637651652182, 70851054921933366241324896134628440370210434216441807412696261358563604784468), (57753594385723283080008450150285839290328959323728215111064869128180653466512, 48682503345807264543892350428384011994195616727229911040222271121395096668630), (65263395028919805249304292530249376748389080058707453448295007353333046365479, 10365290276028966530454805043630476285018698618883354555344947391544138993674), (87437293666767613034832827186884716590065056433713359026118257811657437100576, 89500859891014369107213802143650102492250691913844472777312272074978411403745), (82006715584380621917183646856144618837928013528296150149335800289034986391573, 66403597255556240236430083902481022812584785679596388450322939858389337923701)]
ct = b'\xc6*\x17\xcce\xc1y\xb8\xb4\x8d\x87L\xf8\x81QK\xf4\x02\xf2\xf7\x8d\xe0\xe8\x92\xc7\xe7\x8fg\xb1M\xb4.\x89\x18\xf5\x7f\xed\xc3I\x92\x82\xfd\xfe9\x95\xc9(\x90\xce\x93\xb9+\xce\x958\xf3\x05PH'
nonce = b'6\xe7m\xcc\x8e\x0eG '
Solve
Our LCG equations are mod p and our signature equations are mod q,
working with both mod p and mod q appears to be a difficult component of this challenge.
Additionally, we aren’t even given p!
Signature equations (for known s,r,z,q):
\[d \equiv \frac{s \cdot k - z}{r} \ \text{ (mod q)}\]If you elimintate d (actually this is not useful to solve this chall):
\[k_n \equiv \frac{r_n s_c}{r_c s_n} \cdot k_c + \frac{r_c z_n - r_n z_c}{r_c s_n} \ \text{ (mod q)}\]Thank you to genni for sharing his solution!
If you rearrange for k_next - k_current (is useful):
\[k_n - k_c \equiv \frac{d \cdot r_n + z_n}{s_n} - \frac{d \cdot r_c+z_c}{s_c} \ \text{ (mod q)}\] \[k_n - k_c \equiv \frac{d \cdot r_n}{s_n} + \frac{z_n}{s_n} - \frac{d \cdot r_c}{s_c} - \frac{z_c}{s_c} \ \text{ (mod q)}\] \[k_n - k_c \equiv \left( \frac{r_n}{s_n} - \frac{r_c}{s_c} \right) \cdot d + \frac{z_n}{s_n} - \frac{z_c}{s_c} \ \text{ (mod q)}\]I’ll just rewrite as some new variables for convenience, every:
\[kk_i \equiv u_i \cdot d + v_i \ \text{ (mod q)}\] \[kk_i \equiv u_i \cdot d + v_i + y_i \cdot q\]Now make a lattice basis like Stern’s algorithm, annihilating each kk_i.
https://sci-hub.se/10.1007/11506157_5
Then you can take the LLL outputs and directly solve the same system of equations, recovering every kk_i.
(The LCG relation is handled implicitly)
\[x_0 \begin{bmatrix}u_0 \\ v_0 \\ u_1 \\ v_1 \\ 1 \\ 0 \\ 0 \\ ... \end{bmatrix} + x_1 \begin{bmatrix}u_1 \\ v_1 \\ u_2 \\ v_2 \\ 0 \\ 1 \\ 0 \\ ... \end{bmatrix} + x_2 \begin{bmatrix}u_2 \\ v_2 \\ u_3 \\ v_3 \\ 0 \\ 0 \\ 1 \\ ... \end{bmatrix} + \ ... \ + \ y_0 \begin{bmatrix}q \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ ... \end{bmatrix} + y_1 \begin{bmatrix}0 \\ q \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ ... \end{bmatrix} + y_2 \begin{bmatrix}0 \\ 0 \\ q \\ 0 \\ 0 \\ 0 \\ 0 \\ ... \end{bmatrix} + y_3 \begin{bmatrix}0 \\ 0 \\ 0 \\ q \\ 0 \\ 0 \\ 0 \\ ... \end{bmatrix} = \begin{bmatrix}0 \\ 0 \\ 0 \\ 0 \\ x_1 \\ x_2 \\ x_3 \\ ... \end{bmatrix}\]from Crypto.Util.number import getPrime
from Crypto.Cipher import AES
from fastecdsa.curve import secp256k1
from hashlib import sha256
from secrets import randbelow
def sign(d, z, k):
r = (k * G).x
s = (z + r * d) * pow(k, -1, q) % q
return r, s
def lcg(a, b, p, x):
while True:
x = (a * x + b) % p
yield x
G = secp256k1.G
q = secp256k1.q
Fq = GF(q)
msgs = [b"https://www.youtube.com/watch?v=kv4UD4ICd_0", b"https://www.youtube.com/watch?v=IijOKxLclxE", b"https://www.youtube.com/watch?v=GH6akWYAtGc", b"https://www.youtube.com/watch?v=Y3JhUFAa9bk", b"https://www.youtube.com/watch?v=FGID8CJ1fUY", b"https://www.youtube.com/watch?v=_BfmEjHVYwM", b"https://www.youtube.com/watch?v=zH7wBliAhT0", b"https://www.youtube.com/watch?v=NROQyBPX9Uo", b"https://www.youtube.com/watch?v=ylH6VpJAoME", b"https://www.youtube.com/watch?v=hI34Bhf5SaY", b"https://www.youtube.com/watch?v=bef23j792eE", b"https://www.youtube.com/watch?v=ybvXNOWX-dI", b"https://www.youtube.com/watch?v=dt3p2HtLzDA", b"https://www.youtube.com/watch?v=1Z4O8bKoLlU", b"https://www.youtube.com/watch?v=S53XDR4eGy4", b"https://www.youtube.com/watch?v=ZK64DWBQNXw", b"https://www.youtube.com/watch?v=tLL8cqRmaNE"]
d = randbelow(q)
print(f'{d = }\n')
P = d * G
p = getPrime(0x137)
a, b, x = [randbelow(p) for _ in range(3)]
rng = lcg(a, b, p, x)
sigs = []
for m, k in zip(msgs, rng):
z = int.from_bytes(sha256(m).digest(), "big") % q
r, s = sign(d, z, k)
sigs.append((r, s, z, k))
us = []
vs = []
kks = []
for (r_c, s_c, z_c, k_c), (r_n, s_n, z_n, k_n) in zip(sigs[:-1], sigs[1:]):
u = int(Fq(r_n)/Fq(s_n) - Fq(r_c)/Fq(s_c))
v = int(Fq(z_n)/Fq(s_n) - Fq(z_c)/Fq(s_c))
kk = int(Fq(k_n - k_c))
assert kk == (u*d + v) % q
us.append(u)
vs.append(v)
kks.append(kk)
M = (Matrix(us[:-2]).T
.augment(vector(vs[:-2]))
.augment(vector(us[1:-1]))
.augment(vector(vs[1:-1]))
)
M = block_matrix([
[M, 1],
[q, 0]
])
M[:, :4] *= 2**1000
M = M.LLL()
PR = PolynomialRing(ZZ, [f"kk_{i}" for i in range(15)])
sym_delta_nonces = PR.gens()
eqs_nonces = []
for row in M[:11]: # somewhat arbitrary
comb = [int(x) for x in row[4:]]
assert 0 == (vector(comb) * vector(Fq, us[:-2])) % q
assert 0 == (vector(comb) * vector(Fq, vs[:-2])) % q
assert 0 == (vector(comb) * vector(Fq, us[1:-1])) % q
assert 0 == (vector(comb) * vector(Fq, vs[1:-1])) % q
for i in range(2):
eqs_nonces.append(
sum([a*b for a, b in zip(comb, sym_delta_nonces[i:i+14])])
)
A, _ = Sequence(eqs_nonces).coefficients_monomials()
ker = A.right_kernel().basis_matrix()
for mm in [-1, 1]:
recovered_nonces = mm * ker[0]
recovered_d = Fq(recovered_nonces[0] - vs[0]) / us[0]
print(kks[:-1] == [int(i%q) for i in recovered_nonces])
print(mm, recovered_d == d, recovered_d)
print()